… народные ветряки! Rotating Header Image

ветряные генераторы

2140

Ветрогенератор: зри в ротор

Чтобы точно знать, какой ветрогенератор будет лучше всего соответствовать нуждам семьи и на всю катушку использовать условия местности, надо определиться с тем, какие ветрогенераторы  бывают и в каких сферах применяются.

Промышленное использование ветрогенератора

Ветрогенератор, пригодный для промышленного использования, отличается большими размерами, потребностью в значительной силе ветра и соответственно вырабатываемой мощностью. О промышленном использовании ветрогенератора можно говорить, когда вырабатываемая мощность не опускается ниже 10 КВт – например, для вентиляции горячего цеха в кондитерской промышленности. Вот собственно и все, что нужно знать о таком ветрогенераторе для общего развития, поскольку мы заняты строительством народного ветряка, а наши читатели пока не планируют стать олигархами ветроэнергетики.

Частное использование ветровой электростанции

Как следует из названия, сюда относят ветрогенераторы меньшей мощности, обеспечивающие энергетические потребности небольшого числа частных лиц. Хотя мощности большой частной ветровой электростанции может хватить даже на «питание» целого поселка, мы оставим большие мощности в качестве будущих целей и займемся нашими народными ветряками. Их размеры, мощность и цена должны удовлетворять среднего потребителя электроэнергии или 1 – 2 дома. И здесь вновь стоит сказать, что предпочитаемый тип ветрогенератора напрямую зависит от условий местности.

Лопастник считается более эффективным в зонах, где стабильны сильные ветра – это в основном прибрежная полоса или горная местность. Оптимальная скорость ветра для работы лопастника – 9 – 12 м/с. При малом ветре полезность такого ветрогенератора, даже если он находится на традиционно высокой мачте, низка.

Парусник (парусный ветрогенератор) получил распространение в наших широтах. Он стартует при минимальном ветре и, хотя имеет меньшую по сравнению с лопастником быстроходность и соответственно, вырабатываемую мощность, исправно обеспечивает нас ветроэлектричеством тогда, когда «конкурент» задумчиво покачивает лопастями на своей мачте.

Продавцы лопастных ветрогенераторов часто указывают на неоспоримые конкурентные преимущества своего товара – быстроходность, мощность на выходе, износоустойчивость и устойчивость к штормовым ветрам. И мы согласны с ними.

В нашем парусном ветрогенераторе система ухода от сильного ветра реализована следующим образом: при усилении ветра давление на ветроколесо растет, и ось колеса опускается, при этом паруса имеют меньшую площадь и сопротивление ветру минимально.

Также они отмечают низкий КПД парусного ветряка при скорости ветра 1,5 м/с. И мы снова согласны с ними. Однако лопастный ветрогенератор в тех же условиях вовсе не вырабатывает энергии. Стоит ли критиковать низкий КПД парусного ветрогенератора при нулевом КПД лопастного ветрогенератора в тех же условиях? Наверное, нет. Тем более, что можно усилить ветряк накопительным элементом, который выступит в роли копилки. При маловетреной погоде туда будут падать эти «копейки, что рубль берегут».

Ветрогенератор в Украине

У каждого типа ветрогенератора свои преимущества, и мы прекрасно понимаем преимущества и недостатки каждого из них. Лопастный ветрогенератор будет прекрасно работать на высоте от 50 метров, поскольку там ветер относительно постоянный, не «рыскающего» типа. Другое дело, что в Украине средняя скорость ветра 4 – 5 м/с – и это все-таки «территория» эффективности парусного ветрогенератора. Преимущества лопастника просто потеряются в наших условиях, либо стоимость мачты для его установки превысит стоимость самого ветряка. Пусть они показывают свою эффективность в прибрежных районах, а мы будем готовить самодельный ветрогенератор для наших условий.

Ловля ветра на живца или Изобретаем ветряк второй раз

Чтобы лучше разобраться в причинах вдруг появившейся моды на ветрогенераторы, в том числе, домашние, надо вернуться на тысячелетия назад. Спиральное развитие истории позволяет найти в прошлом ответы на многие вопросы недалекого будущего.

Ветряки: дотопливная эра – наши дни

Ветер использовали задолго до того, как пришла и утвердилась топливная эра, более энергоэффективная по сравнению с примитивными тогда конструкциями ветряков. Да и стоимость ископаемых ресурсов была совсем иной.
Сначала ветер направлял парусные суда древних мореплавателей, намного позже помогал молоть зерно ветряным машинам с вертикальной осью вращения. Критское колесо, прообраз современных ветряков, обеспечивало функционирование ирригационной системы стран Средиземноморья. В 14 веке ветряные мельницы были усовершенствованы в Голландии, и в том же неизменном виде «всплыли» в США образца 1854 года. Американцы разнообразно использовали ветряки, в том числе и для выработки электроэнергии, и к середине 20 века армия ветряков на одной только территории США выросла до 6 млн. единиц. Однако на этом победное шествие ветроэнергетики приостановилось. Гораздо проще и эффективнее оказалось использование продуктов нефтепереработки. Их энергетическая эффективность не зависела от сезона ветров и местности, а экология тогда волновала человечество меньше, чем скорость оборота деньги – нефть – энергия.

Ветряки возвращаются?

Нынешний интерес к ветрогенераторам также возник не на волне исключительной сознательности людей и заботе об экологии. В первую очередь, вернуться к ветроэнергетике заставили нефтяные кризисы, высокие цены на топливо и обещанный к двадцатым годам нынешнего века кризис нехватки ресурсов. Правительства стран отдают себе отчет, что нефтехранилища, заполняемые под завязку, в действительности ничем не помогут, когда нефтересурсы будут исчерпаны. Их строительство – явление скорее психотерапевтического порядка, нежели стабилизационного. И потому нет ничего удивительного, что именно сейчас правительственное субсидирование ветроэнергетики идет в самых крупных государствах мира.

Государства за «зеленую» энергетику

Сразу после избрания Барак Обама обнародовал свое видение решения проблемы исчерпаемых ресурсов. Демократы предложили пакет экономических стимулов (787 миллиардов долларов) на разработку и усовершенствование использования возобновляемых источников энергии в штате Колорадо. В США, где 3% вырабатываемой электроэнергии приходится на долю ветряков, планируется увеличить этот процент до 6-ти к 2012 году, а к 2025 довести его до 25! Дания уже сейчас генерирует 20% электричества при помощи ветряков и в ближайшем будущем собирается увеличить это число до 50%. Все эти меры говорят о том, что человечество вынуждено вновь изобретать ветряк, а вернее, обращаться к неисчерпаемым ресурсам «зеленой» энергетики.

Народный ветряк – энергонезависимость дома

Если пойти от государственного к частному, то не менее резонной выглядит и ставка многих домовладельцев на энергонезависимость своего жилища, которая обеспечивается «домашним» ветрогенератором. Первоначальное вложение капитала компенсируется очень долгой службой ветряка, отсутствием дополнительных вложений в топливо, которые неизбежны при эксплуатации, например, дизельгенератора, экологичностью аппарата и независимостью жилища от центральных источников питания. Простота конструкции делает ветряк по-настоящему народным, поскольку позволяет собрать его самостоятельно.

Валерия Федоренко, специально для www.vetronet.com

Ветряки на Меганоме

Недавно побывал на судакской ветроэлектростанции на Меганоме. Вот что о ней пишут:

Над Меганомом постоянно дует ветер. Его энергию используют: в 2002 году на вершине Меганома открыли ветровую электростанцию. Ее официальное название – Судакский участок государственного предприятия “Донузлавская ветровая электростанция”. 58 ветряков Меганома издали смотрятся заманчиво, почти сказочно, но рядом с ними находиться опасно. Ветровые агрегаты издают сильный шум, свист и, как установлено медиками, тяжелые для психики инфразвуки. Может, эти неслышимые человеческим слухом звуки и являются причиной того, что эти места овеяны почему-то печальной славой.

На Меганоме установлено 58 ветро-генераторов, каждый из которых когда-то стоил 250 тыс. $ и выдавал 500 мегават в год, что позволяло полностью снабжать электричеством практически весь Судакский район: Судак, Новый Свет, Веселое, Рыбачье, Морское, Капсель.

Зрелище, конечно, величественное. Но особенно поразило, что почти все они стоят! При всем моем скепсисе относительно лопастных ветряков, при таком ветре они обязаны крутиться! Я пораспрашивал у местных жителей – оказалось что в прошлом году на Меганоме случился пожар. Огонь был такой, что металлические конструкции и дале лопасти просто поплавились и ветряки вышли из строя. Сейчас тендер на реконструкцию ветрофермы выиграла какая-то запорожская фирма, их будут скорее всего менять.

у ветрякаВетряки на Меганоме (Судак)Ветряки на Меганоме (Судак)

Лопасть ветряка (Меганом, Судак)

Степные пожары – это страшная вещь. А горные – особенно, потому что потушить их практически невозможно в ввиду отсутствия сооветствующей техники и финансирования у нашего МЧС – для этого нужны вертолеты. А ведь пожары происходят не сами по себе – это умышленные поджоги недоумков, которым нравится, как горит трава, или поджигателей мусора. Буквально на следующий же день я наблюдал как горел Карадагский заповедник (фото внизу). Как сказали жители, кто-то поджог мусор (местную свалку, которую устроили сами же жители), и огонь перекинулся на траву в горах. Сгорела огромная площадь – десятки гектар. Надо отдать должное МЧСникам – пожар таки потушили в течение нескольких часов… Чтобы вы понимали масштабы бедствия, я отметил фигурки пожарников:  (далее…)

Сухопутная парусная флотилия

Без энергии невозможна никакая деятельность каждого человека в отдельности и человечества в целом. По сути дела, любая деятельность человека является деятельностью экономической, так как экономика – это процесс обмена между людьми порциями энергии или их информационными отражениями в виде так называемой стоимости, ибо стоимость – это информация о затраченной на производство товара или услуги энергии. За последние 30-35 лет потребление энергии в мире удваивается каждые 10 лет, этим подтверждается, что научно-техническое и экономическое развитие – это, прежде всего, развитие энергетическое.

Будет прирост энергии – будет и прирост ВВП, нехватка энергии находит своё отражение в так называемых финансовых и экономических кризисах. Люди пытаются найти причину таких кризисов в чем угодно, но только малое число экономистов и политических деятелей понимают роль энергии в экономических и финансовых катаклизмах последних 20 лет. Те, кто не понимает роль энергии, решает экономические проблемы уничтожением «лишнего» населения в военных конфликтах. Тот же, кто понимает толк в энергетике, решает экономические проблемы через научно-техническое развитие, важной составной частью которого является развитие энергетического комплекса.

Увеличивающееся энергопотребление в течение последних десятилетий удовлетворяется в основном за счет использования традиционных энергоносителей – угля, нефти, газа, торфа, воды (гидроэнергетика) и атомной энергии. Быстрый рост энергопотребления, паника на рынках энергоносителей в виде резкого удорожания топлива и энергии, обострение геополитических, экономических и экологических проблем топливно-энергетического комплекса (ТЭК) требуют более обоснованной и тщательной проработки принципов использования природных ресурсов и стратегии развития энергетики. Поэтому с каждым годом все более актуален поиск и освоение альтернативных нетрадиционных источников энергии, к которым, в частности, относится ветроэнергетика.

Доля нетрадиционных возобновляемых безтопливных источников энергии (солнечной, ветровой, геотермальной, малых водных потоков и др.) в общем объеме мирового производства электроэнергии составляла в 2006 году около 2%. При этом, просто смешно, в Российской Федерации эта доля составляла доли процента. Одновременно Россия может гордиться своей отсталостью хотя бы в том, что более семидесяти процентов электроэнергии вырабатывается на тепловых станциях, работающих на мазуте или угле. И это тогда, когда запасы углеводородов (угля, нефти и газа) таят буквально на глазах, а половина добытой нефти и газа прямиком идет за рубеж нашим историческим конкурентам, с которыми у России может в будущем возникнуть военных конфликт. По оценкам специалистов российские запасы нефти иссякнут приблизительно через тринадцать лет, а запасы газа – через шестьдесят лет.

Все установки, перерабатывающие кинетическую энергию прямолинейного движения массы ветрового потока в энергию вращения ротора генератора с последующим превращением ее в электрическое напряжение на выходных клеммах электронного инвертора, делятся на несколько типов. Основными из них являются ВЭУ с горизонтальной и вертикальной осью вращения. Согласно международным стандартам (IEC 61400, Требования по Ллойду) мощность ВЭУ принимается за номинал на скорости ветра 11.4 м/сек. КПД ветроэнергетической установки (эффективность использования энергии ветра) – величина, показывающая, сколько процентов энергии ветра ветро-ротор отбирает и передает на генератор. Эту величину принято считать КПД ВЭУ (КИЭВ – коэффициент использования энергии ветра), хотя на самом деле это КПД ветро-ротора (ветроколеса). Реальный КПД всей ветроустановки установки можно подсчитать, приняв во внимание КПД генератора (70-90%), КПД инвертора (если таковой имеется, 80-90%) и КПД передачи энергии на расстояние.

vetr1Лопастные ВЭУ с горизонтальной осью вращения легко сделать, если мощность ВЭС не превышает 10 кватт, но при увеличении мощности ВЭУ возникают большие технические сложности. Этот тип установок получил наибольшее (традиционное) распространение в связи с рядом причин: наибольшая эффективность (КПД) использования ветра (до 42% на практике, но только при наличии должного направления ветра) по сравнению с другими конструкциями, благодаря «подъемной силе» крыла; традиционность мышления людей, принимающих решения. Среди ВЭУ с горизонтальной осью вращения существуют несколько подтипов – крыльчатые (лопастные) различных конструкций, с эффектом Магнуса, и другие. Самые известные своей эффективностью являются крыльчатые лопастные ВЭУ.

Однако у лопастных ВЭУ с горизонтальной осью вращения имеются один, но очень существенный недостаток – заметная инерционность при ориентировке на ветер. Изобретатели, разработчики и фирмы-производители сознательно замалчивают этот факт от потребителя, информируя его только о достоинствах установки, которые проявляются только в аэродинамической трубе, т.е. в специально созданных условиях. Но на деле же получается следующее. Мощность ВЭУ рассчитывается, исходя из того, что направление ветра всегда совпадает с осью вращения ветро-ротора, т.е. ветер дует непосредственно на расчетную поверхность лопастей. В результате получается расчетная мощность ВЭУ. Однако из жизни известно, что направление ветра не является константой, ветер постоянно меняет свое направление. Скорость изменения направления ветра во много раз превышает реакцию лопастных ветроустановок в ответ на изменение направления ветра. В итоге создается ситуация, когда лопасти вращаются просто по инерции в то время, когда ветер дует перпендикулярно оси вращения лопастей.

У мощных лопастных ветряков система управления изменяет направление флюгера, если ветер в новом направлении дует более 15 сек. Если поток воздуха будет менять свое направление с интервалом менее 15 сек, то ветряк просто не меняет своего направления. Следовательно, лопасти могут перестать вращаться. Да и в том случае, если направление ветра меняется с интервалом более 15 секунд, нет никакой гарантии, что после поворота ветряка ветер к этому моменту будет дуть во вновь выбранном направлении. При повороте лопастей начинают проявляться силы Кориолиса, будет сказываться инерция всей гондолы с генератором, редуктором и т.д. При высокой частоте вращения лопастей выявляются малейшие неточности в центровке лопастей, неравномерность мощности ветра по высоте, что ведет к поломке лопастей или разрушению всей ветроэнергоустановки.

Существенным недостатком является сложность технологического процесса производства лопастей, т.к. профиль лопасти (винта) не является одинаковым по сечению вдоль ее длины. Начиная с 3 кВт, такие ВЭУ требуют специальное раскручивающее устройство, т.е. стартовать сами такие установки не могут. Это приводит к усложнению системы старта и управления, а значит, к удорожанию ВЭУ. На Западе много влияния уделяется тому факту, что ВЭУ с горизонтальной осью вращения являются опасными для птиц. Это происходит в связи с тем, что внешняя часть лопасти движется быстрее, чем внутренняя и птицы не могут своевременно «рассчитать» ее скорость, чтобы увернуться. ВЭУ большой мощности становятся источниками инфразвука, который оказывает негативное воздействие на людей и животных, может вызывать появление нежелательных колебаний в близко расположенных зданиях, вплоть до их разрушения.  (далее…)

Критерии идеального ветрогенератора

<< Начало

Таким образом, задача «построить хороший ветряк» трансформируется в задачу «построить «правильный» ветряк для конкретного места и конкретного потребителя». Здесь уместно посмотреть на существующий рынок и прояснить для себя плюсы и минусы существующих конструкций.

Для того чтобы сравнивать, нужно остановиться на каких-то параметрах (желательно цифровых) и приложить эти параметры к районам эксплуатации. Важнейшей характеристикой места эксплуатации является его «производительность», т.е. количество энергии, которое потенциально имеет ветер. Достаточно определенно эту «производительность» характеризует скорость ветра, например за год. Районы СНГ можно условно разбить на три, по среднегодовой скорости ветра:
– менее 3 м/с;
– от 3 до 5 м/с;
– более 5 м/с.

При этом нужно помнить, что скорость ветра распределена неравномерно по времени. Для просторов СНГ чаще всего общей является зависимость – слабые ветра 70-80% времени, средние ветра – 15-20% времени, сильные ветра – 5-7%, очень сильные ветра – 2-3%, штормы – 1%. Таким образом, чаще всего дует ветер 1-3 м/с. Штормы встречаются очень редко. Отсюда следует, что разумно ориентироваться на слабые ветра, даже если при сильных и штормовых ветрах придется ветряк остановить или сложить. Система увода ветряка из-под сильного ветра, конечно усложняет его конструкцию, но это уже следующий вопрос.

Теперь само время посмотреть на предложение. Большинство предлагаемых моделей – лопастные ветряки с горизонтальной осью разных размеров и соответственно мощности с двумя, тремя и четырьмя лопастями. Реже встречаются ветряки с большим количеством лопастей. Фирмы предлагают разнообразную комплектацию: от отдельных узлов до полного комплекта с монтажом и наладкой у заказчика. Некоторые модели собственного производства, много предложений импортных агрегатов – от китайских до уважаемых европейских производителей.

Если обратиться к цифровым показателям – видно, что заявленные мощности ветрогенераторы «выдают» при скоростях ветра 8-15 м/с; при этом минимальная скорость ветра (так называемая скорость страгивания) 2,5-4 м/с., максимальная эксплуатационная – 25-45 м/с. Несколько другие показатели имеют многолопастные и стаксельные ветряки. Минимальная скорость ветра 0,5-1,5 м/с. Максимальная мощность при скоростях ветра 6-20 м/с. максимальная эксплуатационная скорость ветра – 15-30 м/с.
Разница характеристик определяется в основном «заполненностью» окружности, которую описывают лопасти. Когда лопасти вращаются достаточно быстро, вся окружность используется достаточно эффективно и мало зависит от количества и площади лопастей. А вот на слабых ветрах многолопастные и стаксельные ветряки явно выигрывают. Им есть чем «ловить» ветер, они способны преобразовать в полезную работу очень слабые потоки воздуха. При усилении ветра они теряют преимущество, а на сильных ветрах проигрывают «лопастникам». Потери на трение растут вместе со скоростью.

Теперь попытаемся характеристики ветряков «привязать к местности». Становится понятно что в большинстве районов СНГ «лопастники» как правило стоят или работают в пол-силы. Исключение составлять будут прибрежные районы. Об этом же говорят и отзывы потребителей – часто ветроагрегаты не оправдывают ожидания потребителей. Мощность оказывается недостаточной на больших промежутках времени.
По многолопастным и стаксельным ветрякам опыта эксплуатации меньше, но расчетные показатели и тот опыт что есть говорят о более высокой эффективности на большей территории СНГ.

Проблемы эксплуатации и их решения

Если обобщить проблемы эксплуатации ветряков то их две: слабый ветер и сильный ветер. Потребителя раздражает, когда дорогостоящее устройство простаивает из-за слабого ветра или после поломки от сильного ветра. Причем тут важно правильно оценивать последствия. Разработчики умаляют последствия простоя от безветрия и сильно преувеличивают последствия от сильного ветра. В реальности простой – это прямые потери. И несколько недель безветрия могут принести больше потерь чем замена детали в течении пары дней после поломки от шторма.

Увеличивать запас по мощности тоже не выход. Если покупать ветрогенератор максимальной мощностью в 10 кВт для того, чтобы он вырабатывал 2 кВт, как минимум дороговато. А в конечном итоге лишние затраты ложатся на стоимость энергии.
С другой стороны, способность противостоять штормовым ветрам тоже ложится бременем на цену из-за утяжеления конструкции. А может быть не нужно противостоять шторму? Трава ведь не борется с ветром! Она ложится на землю, а потом поднимается, как ветер стихнет. А пальма «отдает» все листья, но спасает ствол. Листья быстро отрастают заново.

Можно попытаться описать «идеальный» ветряк:
– простая генераторная головка заданной мощности, способная работать на малых скоростях;
– легкие лопасти большой площади, чтобы «снять» энергию с минимального ветра;
– система складывания лопастей при усилении ветра;
– опора, опускающая генератор с лопастями при усилении ветра;
– нужно иметь возможность увеличивать/уменьшать мощность ветроагрегата в некоторых пределах, не перестраивая всю конструкцию.

Конструкция генератора для ветряка должна удовлетворять одновременно нескольким основным требованиям:
– генератор должен быть тихоходным;
– никаких щеток и скользящих контактов;
– возможность коммутирования обмоток с целью удержания напряжения в определенных пределах;
– простота;
– технологичность;
– ремонтопригодность.

Сайт постоянно обновляется! См. также рубрики:

Вадим Беляев,
главный конструктор компании “Ветронет”